Identification of key components in the energy metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus by transcriptome analyses
نویسندگان
چکیده
Energy conservation via the pathway of dissimilatory sulfate reduction is present in a diverse group of prokaryotes, but is most comprehensively studied in Deltaproteobacteria. In this study, whole-genome microarray analyses were used to provide a model of the energy metabolism of the sulfate-reducing archaeon Archaeoglobus fulgidus, based on comparative analysis of litoautotrophic growth with H2/CO2 and thiosulfate, and heterotrophic growth on lactate with sulfate or thiosulfate. Only 72 genes were expressed differentially between the cultures utilizing sulfate or thiosulfate, whereas 269 genes were affected by a shift in energy source. We identified co-located gene cluster encoding putative lactate dehydrogenases (LDHs; lldD, dld, lldEFG), also present in sulfate-reducing bacteria. These enzymes may take part in energy conservation in A. fulgidus by specifically linking lactate oxidation with APS reduction via the Qmo complex. High transcriptional levels of Fqo confirm an important role of F420H2, as well as a menaquinone-mediated electron transport chain, during heterotrophic growth. A putative periplasmic thiosulfate reductase was identified by specific up-regulation. Also, putative genes for transport of sulfate and sulfite are discussed. We present a model for hydrogen metabolism, based on the probable bifurcation reaction of the Mvh:Hdl hydrogenase, which may inhibit the utilization of Fdred for energy conservation. Energy conservation is probably facilitated via menaquinone to multiple membrane-bound heterodisulfide reductase (Hdr) complexes and the DsrC protein-linking periplasmic hydrogenase (Vht) to the cytoplasmic reduction of sulfite. The ambiguous roles of genes corresponding to fatty acid metabolism induced during growth with H2 are discussed. Putative co-assimilation of organic acids is favored over a homologous secondary carbon fixation pathway, although both mechanisms may contribute to conserve the amount of Fdred needed during autotrophic growth with H2.
منابع مشابه
Assessment of the Carbon Monoxide Metabolism of the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus VC-16 by Comparative Transcriptome Analyses
The hyperthermophilic, sulfate-reducing archaeon, Archaeoglobus fulgidus, utilizes CO as an energy source and it is resistant to the toxic effects of high CO concentrations. Herein, transcription profiles were obtained from A. fulgidus during growth with CO and sulfate or thiosulfate, or without an electron acceptor. This provided a basis for a model of the CO metabolism of A. fulgidus. The mod...
متن کاملIdentification and characterization of a novel ferric reductase from the hyperthermophilic Archaeon Archaeoglobus fulgidus.
Archaeoglobus fulgidus, a hyperthermophilic sulfate-reducing Archaeon, contains high Fe(3+)-EDTA reductase activity in its soluble protein fraction. The corresponding enzyme, which constitutes about 0.75% of the soluble protein, was purified 175-fold to homogeneity. Based on SDS-polyacrylamide gel electrophoresis, the ferric reductase consists of a single subunit with a M(r) of 18,000. The M(r)...
متن کاملRepair activities of 8-oxoguanine DNA glycosylase from Archaeoglobus fulgidus, a hyperthermophilic archaeon.
Oxidative DNA damage is caused by reactive oxygen species formed in cells as by products of aerobic metabolism or of oxidative stress. The 8-oxoguanine (8-oxoG) DNA glycosylase from Archaeoglobus fulgidus (Afogg), which excises an oxidatively-damaged form of guanine, was overproduced in Escherichia coli, purified and characterized. A. fulgidus is a sulfate-reducing archaeon, which grows at betw...
متن کاملComplete genome sequence analysis of Archaeoglobus fulgidus strain 7324 (DSM 8774), a hyperthermophilic archaeal sulfate reducer from a North Sea oil field
Archaeoglobus fulgidus is the type species of genus Archaeoglobus Stetter 1998, a hyperthermophilic sulfate reducing group within the Archaeoglobi class of the euryarchaeota phylum. Members of this genus grow heterotrophically or chemolithoautotrophically with sulfate or thiosulfate as electron acceptors. Except for A. fulgidus strain 7324 and the candidate species "Archaeoglobus lithotrophicus...
متن کاملNovel type of ADP-forming acetyl coenzyme A synthetase in hyperthermophilic archaea: heterologous expression and characterization of isoenzymes from the sulfate reducer Archaeoglobus fulgidus and the methanogen Methanococcus jannaschii.
Acetyl coenzyme A (CoA) synthetase (ADP forming) (ACD) represents a novel enzyme of acetate formation and energy conservation (acetyl-CoA + ADP + P(i) right harpoon over left harpoon acetate + ATP + CoA) in Archaea and eukaryotic protists. The only characterized ACD in archaea, two isoenzymes from the hyperthermophile Pyrococcus furiosus, constitute 145-kDa heterotetramers (alpha(2), beta(2)). ...
متن کامل